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Why use MPI on the Grid?

• Applications already exist
• Tools exist

♦ Libraries and components, some 
enabled for the Grid
• E.g., Cactus (Gordon Bell winner)

• Simplifies Development
♦ “Build locally, run globally”
♦ NSF TeraGrid plans this approach

University of Chicago Department of Energy

Why use the MPI API on 
the Grid?

• MPI’s design is latency tolerant
• Separation of concerns matches 

the needs of Grid infrastructure
♦ MPI itself has no “grid awareness”
♦ MPI designed to operate in many 

environments
• The Grid is “just” another such 

environment
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Specification and 
Implementation

• MPI is a specification, not a particular 
implementation

• MPI (the specification) has many 
features that make it well-suited for 
Grid computing

• There are many opportunities for 
enhancing MPI implementations for use 
in Grid computing
♦ Some tools already exist
♦ Great opportunities for research and papers 

for EuroPVMMPI’03!
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Grid Issues

• Simplest “grid” model
♦ Multiple systems that do not share all resources

• Example: Several clusters, each with its own file system

• More complex model
♦ Multiple systems in separate administrative domains

• Example: Several clusters, each administered by a different 
organization, with different access policies and resources

• (Mostly) Shared Properties
♦ Geographic separation

• From 1 to 10000km
• Each 1000km gives at least 3ms of latency

8 Typical of disk access!

♦ Process management separate from communication
• Must not assume any particular mechanism for creating 

processes



4

University of Chicago Department of Energy

Issues When Programming 
for the Grid

• Latency
♦ Using MPI’s send modes to hide 

latency

• Hierarchical Structure
♦ Developing and using collective 

communication for high, unequal 
latency

• Handling Faults

University of Chicago Department of Energy

Quick review of MPI 
Message passing

• Basic terms 
♦ nonblocking - Operation does not wait for 

completion
♦ synchronous - Completion of send requires

initiation (but not completion) of receive
♦ ready - Correct send requires a matching 

receive
♦ asynchronous - communication and 

computation take place simultaneously, not
an MPI concept (implementations may use 
asynchronous methods)
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Communication Modes

• MPI provides multiple modes for sending messages:
♦ Synchronous mode (MPI_Ssend):  The send does not 

complete until a matching receive has begun.  
♦ Buffered mode (MPI_Bsend):  The user supplies a buffer to 

the system for its use.  
♦ Ready mode (MPI_Rsend):  User guarantees that a 

matching receive has been posted.
• Allows access to fast protocols
• Undefined behavior if matching receive not posted

• Non-blocking versions (MPI_Issend, etc.)
• MPI_Recv receives messages sent in any mode.

University of Chicago Department of Energy

What is message passing?
• Data transfer plus synchronization

• Requires cooperation of sender and receiver
• Cooperation not always apparent in code
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Message protocols

• Message consists of “envelope” and data
♦ Envelope contains tag, communicator, length, source 

information, plus impl. private data

• Short
♦ Message data (message for short) sent with 

envelope

• Eager
♦ Message sent assuming destination can store

• Rendezvous
♦ Message not sent until destination oks

University of Chicago Department of Energy

Eager Protocol
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• Data delivered to process 1 
♦ No matching receive may exist; process 1 

must then buffer and copy.
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Eager Features

• Reduces synchronization delays
• Simplifies programming (just 

MPI_Send)
• Requires significant buffering
• May require active involvement of CPU 

to drain network at receiver’s end
• May introduce additional copy (buffer to 

final destination)
• Minimizes latency

University of Chicago Department of Energy

How Scaleable is Eager 
Delivery?

• Buffering must be reserved for arbitrary 
senders

• User-model mismatch (often expect buffering 
allocated entirely to “used” connections).

• Common approach in implementations is to 
provide same buffering for all members of 
MPI_COMM_WORLD; this is optimizing for 
non-scaleable computations

• Scalable implementations that exploit 
message patterns are possible (but not widely 
implemented)
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Rendezvous Protocol

• Envelope delivered first
• Data delivered when user-buffer 

available
♦ Only buffering of envelopes required
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Rendezvous Features

• Robust and safe
♦ (except for limit on the number of 

envelopes…)

• May remove copy (user to user direct)
• More complex programming 

(waits/tests)
• May introduce synchronization delays 

(waiting for receiver to ok send)
• Three-message handshake introduces 

latency
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Short Protocol

• Data is part of the envelope
• Otherwise like eager protocol
• May be performance optimization 

in interconnection system for short 
messages, particularly for 
networks that send fixed-length 
packets (or cache lines)
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Implementing MPI_Isend

• Simplest implementation is to always use 
rendezvous protocol:

♦ MPI_Isend delivers a request-to-send control 
message to receiver

♦ Receiving process responds with an ok-to-send
• May or may not have matching MPI receive; only needs 

buffer space to store incoming message
♦ Sending process transfers data

• Wait for MPI_Isend request
♦ wait for ok-to-send message from receiver
♦ wait for data transfer to be complete on sending side
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Alternatives for MPI_Isend

• Use a short protocol for small messages
♦ No need to exchange control messages
♦ Need guaranteed (but small) buffer space 

on destination for short message envelope
♦ Wait becomes a no-op

• Use eager protocol for modest sized 
messages
♦ Still need guaranteed buffer space for both 

message envelope and eager data on 
destination

♦ Avoids exchange of control messages

University of Chicago Department of Energy

Implementing MPI_Send

• Can’t use eager always because this could 
overwhelm the receiving process

if (rank != 0) MPI_Send( 100 MB of data )
else receive 100 MB from each process

• Would like to exploit the blocking nature (can 
wait for receive)

• Would like to be fast
• Select protocol based on message size (and 

perhaps available buffer space at destination)
♦ Short and/or eager for small messages
♦ Rendezvous for longer messages
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Implementing MPI_Rsend

• Just use MPI_Send; no advantage 
for users

• Use eager always (or short if 
small)
♦ Even for long messages

University of Chicago Department of Energy

Choosing MPI Alternatives

• MPI offers may ways to accomplish the 
same task

• Which is best?
♦ Just like everything else, it depends on the 

vendor, system architecture, computational 
grid environment

♦ Like C and Fortran, MPI provides the 
programmer with the tools to achieve high 
performance without sacrificing portability
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Using MPI_Rsend to 
Minimize Latency

• For high-latency environments, 
avoid message handshakes
♦ Problem: Must guarantee that 

sufficient space is available at 
destination for the message without
exchanging messages

♦ Use algorithmic features and double 
buffering to enforce guarantees

University of Chicago Department of Energy

Using MPI_Rsend

• Illustrate with simple Jacobi 
example
♦ Typical data motion for many 

applications
♦ Specific numeric algorithm is obsolete
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Jacobi Iteration

• Simple parallel data structure

l Processes exchange rows with neighbors
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Send and Recv

• Simplest use of send and recv
• MPI_Status status;

MPI_Send( xlocal+m*lrow, m, MPI_DOUBLE, up_nbr, 0, 
comm );
MPI_Recv( xlocal, m, MPI_DOUBLE, down_nbr, 0, 
comm, &status );
MPI_Send( xlocal+m, m, MPI_DOUBLE, down_nbr, 0, 
comm);
MPI_Recv( xlocal+m*(lrow+1), m, MPI_DOUBLE, 
up_nbr, 1, comm, &status);

• Receives into ghost rows



14

University of Chicago Department of Energy

What is the whole 
algorithm?

1. Loop
1. Exchange ghost cells
2. Perform local computation (Jacobi 

sweep)
3. Compute convergence test using 

MPI_Allreduce

2. Until converged

University of Chicago Department of Energy

What is the ready-send 
version of the algorithm?

1. Initialize (post nonblocking receives, barrier 
or initial MPI_Allreduce)

2. Loop
1. Exchange ghost cells using MPI_Rsend (or 

MPI_Irsend)
2. Perform local computation (Jacobi sweep)
3. Post nonblocking receives for next iteration
4. Compute convergence test using MPI_Allreduce

3. Until converged
1. Cancel unneeded receives with MPI_Cancel
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Rsend and Irecv

• void init_exchng(…) 
{

MPI_Irecv( xlocal, m, MPI_DOUBLE, down_nbr, 0,
comm, &m->req[0]); 

MPI_Irecv( xlocal+m*(lrow+1), m, MPI_DOUBLE,
up_nbr, 1, comm, &m->req[1]);

}
• void do_exchng( … )

{
MPI_Rsend( xlocal+m*lrow, m, MPI_DOUBLE, up_nbr, 0, 

comm );
MPI_Rsend( xlocal+m, m, MPI_DOUBLE, down_nbr, 0, comm);
MPI_Waitall( 2, m->req, MPI_STATUSES_NULL );

}
• Void clear_exchng( … )

{
MPI_Cancel( m->req[0] ); MPI_Cancel( m->req[1] );

} 

University of Chicago Department of Energy

Recommendations

• Aggregate short messages
• Structure algorithm to use MPI_Rsend or 

MPI_Irsend
• Avoid MPI_Ssend
• Once more MPI implementations support 

MPI_THREAD_MULTIPLE, restructure 
algorithms to place MPI communication into a 
separate thread

♦ MPI_Init_thread is used to request a particular level 
of thread support; it returns as a parameter the 
available level of thread support
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Research Topics

• Reduce the number of internal 
messages for sending large messages
♦ “Receiver rendezvous” instead of sender 

rendezvous
• Difficulties with MPI_ANY_SOURCE might be 

addressed with communicator-specific attribute 
values

♦ Adaptive allocation of buffer space 
(increasing eager threshold), to make 
Rsend approach unnecessary

♦ “Infinite window” replacements for IP/TCP
• Provide effect of multiple TCP paths but with 

sensible flow control and fair resource sharing

University of Chicago Department of Energy

Using MPI Collective 
Operations

• Collective routines offer a simpler 
programming model

• Puts the burden of implementing the best 
communication algorithm on the MPI 
implementor

♦ Typical implementations not optimized (see 
Tuesday’s talk on MPICH2)

♦ Few implementations are grid optimized

• I will discuss the implementation in MPICH-G2
♦ Another good implementation is MagPIE (see 

http://www.cs.vu.nl/albatross/#software)
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Topology-Aware Collective 
Team

• Original Design and Implementation
♦ Bronis R. de Supinski
♦ Nicholas T. Karonis
♦ Ian Foster
♦ William Gropp
♦ Ewing Lusk
♦ John Bresnahan

• Updated Implementation by
♦ Sebastien Lacour

University of Chicago Department of Energy

Multi-level communication 
systems

• Order(s) of magnitude 
performance differences
♦ Latency
♦ Bandwidth

• Examples
♦ SMP Clusters
♦ Computational grid
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Topology unaware use 

• Best case
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Topology unaware 
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Topology unaware with 
non-zero root 

• Common case (many links slow)
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Topology aware solution 
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• Note that this is still not the best — see Tuesday’s MPICH2 talk
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Why a Multi-Level 
Implementation?

• Two levels do not capture all important 
systems
♦ Where to split multilevel system into two?

• Between two slowest levels?
• Between two fastest levels?
• Who determines?

• Original problem recurs at coalesced 
levels

• Two level approaches can degenerate to 
topology unaware solution for derived 
communicators

University of Chicago Department of Energy

MPICH-G2 Topology Aware 
Implementation

• Determine topology 
♦ During start-up or communicator creation
♦ Hidden communicators

• Clusters
• Masters

• Perform operation “recursively” over 
masters

• MPICH ADI additions
♦ MPID_Depth
♦ MPID_Clusterid 
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Hidden Communicator 
Creation

cluster[0] = copy of user level communicator;
for (i = 1; i < MPID_Depth; i++)

MPI_Comm_split (cluster[i-1],
MPID_Clusterid, 0, &cluster[i]);

cluster_rank = 0;
for (i = MPID_Depth - 1; i > 0; i--)

MPI_Comm_split (cluster[i-1],
cluster_rank, 0, &master[i]);

if (cluster_rank != 0)
MPI_Comm_free (master[i]);

MPI_Comm_rank (cluster[i], &cluster_rank);

University of Chicago Department of Energy

Broadcast algorithm

MPI_Bcast (buffer, count, datatype, 0, comm)
for (i = 1; i < MPID_Depth; i++)

MPI_Comm_rank (cluster[i], &cluster_rank);
if (cluster_rank == 0)

MPIR_LevelBcast (buffer, count, 
datatype, 0, master[i], i);

Non-zero roots:
Substitute root for its master at faster levels

Replace 0 with root in level broadcast if necessary
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Topology aware solution 
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LAN Results

• 16 tasks each on ANL SP2 and ANL O2K
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Comparative Performance 
Results

• 16 tasks each on ANL SP2, O2K and SDSC SP2
♦ Three-level system
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Topology Information

• MPICH-G2 exports information on 
system topology to applications 
programs through attributes:

• MPICHX_TOPOLOGY_DEPTHS
♦ Vector, ith value is depth of ith process

• MPICHX_TOPOLOGY_COLORS
♦ Vector of pointers to arrays; the ith vector 

has length corresponding to the depth of 
that process and the values are the color at 
that level
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Accessing Topology 
Information in MPICH-G2

int main (int argc, char *argv[])
{

…
int *depths, **colors;
…
rv = MPI_Attr_get(MPI_COMM_WORLD, 

MPICHX_TOPOLOGY_DEPTHS, &depths, &flag1);
rv = MPI_Attr_get(MPI_COMM_WORLD, 

MPICHX_TOPOLOGY_COLORS, &colors, &flag2);
if (flag1 && flag2) {

/* depths[i] is depth of ith process */
/* colors[i][j] is color of the ith process at the jth level */
…

}

University of Chicago Department of Energy

Performance and 
Debugging Tools

• Not a pretty picture
• No real grid debuggers
• Few application-level performance 

tools
• MPI provides a powerful hook on 

which to build customized 
performance and correctness 
debugging tools



25

University of Chicago Department of Energy

Using PMPI routines

• PMPI allows selective replacement of 
MPI routines at link time (no need to 
recompile) 

• Some libraries already make use of 
PMPI

• Some MPI implementations have PMPI 
bugs
♦ PMPI may be in a separate library that 

some installations have not installed 

University of Chicago Department of Energy

MPI LibraryUser Program

Call MPI_Send

Call MPI_Bcast

MPI_Send

MPI_Bcast

Profiling Interface

Profiling
Library

PMPI_Send

MPI_Send
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Using the Profiling 
Interface

static int nsend = 0;

int MPI_Send( void *start, int count, 
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm )

{
nsend++;
return PMPI_send(start, count, datatype,

dest, tag, comm);
}

University of Chicago Department of Energy

Collecting Data From the 
Profiling Interface

• Use MPI_Finalize to force each 
process to either collect data 
(using MPI communication) or 
write data to local files.  Then call 
PMPI_Finalize
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Logging and Visualization 
Tools

• Upshot, Jumpshot, and MPE tools 
http://www.mcs.anl.gov/mpi/mpich

• Pallas VAMPIR
http://www.pallas.com/

• Pablo http://www-
pablo.cs.uiuc.edu/Projects/Pablo/pablo.html

• Paragraph 
http://www.ncsa.uiuc.edu/Apps/MCS/ParaGraph/ParaGraph.ht
ml

• Paradyn http://www.cs.wisc.edu/~paradyn

• Many other vendor tools exist
♦ e.g., xmpi (SGI and HP)

University of Chicago Department of Energy

Future Opportunities in 
MPI Implementations

• I/O
♦ Exploit MPI’s sensible I/O semantics to get precise 

and latency tolerant behavior

• RMA
♦ One-sided operations allow eager/ready-send 

behavior for messages of all sizes

• Dynamic processes
♦ Major problem is the interaction with grid resource 

schedulers

• WAN Bandwidth
♦ Multiple TCP paths (like GridFTP)
♦ Customized UDP

• May provide better congestion control, responsible 
sharing of bandwidth
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A Few Comments on I/O

• Applications with data at one location and 
compute resources at another may become a 
more common class of grid codes

• POSIX I/O requires very strong coherency
♦ So strong that many systems don’t provide POSIX 

semantics and instead provide ill-defined, cache-
incoherent strategies

• MPI I/O has more precisely defined semantics 
that allow the MPI application to manage I/O 
sensibly (at least for a running MPI code)

University of Chicago Department of Energy

ROMIO -- A Portable 
Implementation of MPI-IO

• Implementation strategy: an abstract 
device for I/O (ADIO)

• Tested for low overhead
• Can use any MPI implementation (MPICH, 

vendor)

ADIO

MPI-IO

PVFS NFS Unix

ADIOnetwork

Others

remote I/O
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Two-Phase Collective I/O

• ROMIO has an optimized implementation 
of  two-phase collective I/O 

• I/O is done in two phases: an I/O phase 
and a communication phase

• In the I/O phase, data is read/written in 
large chunks to minimize I/O latency

• Message-passing among compute nodes is 
used to redistribute data as needed

University of Chicago Department of Energy

Current State of MPI I/O

• Only prototypes exist for grid I/O
• On the other hand, very efficient cluster 

and MPP implementations exist
♦ Short term recommendation

• Use MPI I/O within a cluster and MPI 
communication to move data on the Grid

♦ Long term
• Expect (or contribute to!) the development of MPI 

I/O for the grid



30

University of Chicago Department of Energy

Fault Tolerance in MPI

• Can MPI be fault tolerant?
♦ What does that mean?

• Implementation vs. Specification
♦ Work to be done on the implementations
♦ Work to be done on the algorithms

• Semantically meaningful and efficient collective 
operations

♦ Use MPI at the correct level
• Build libraries to encapsulate important 

programming paradigms

• (Following slides are joint work with 
Rusty Lusk)
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Myths and Facts

Myth: MPI behavior is defined by its implementations.
Fact: MPI behavior is defined by the Standard Document at 

http://www.mpi-forum.org

Myth: MPI is not fault tolerant.
Fact: This statement is not well formed.  Its truth depends on what 

it means, and one can’t tell from the statement itself.  More later.

Myth: All processes of MPI programs exit if any one process crashes.
Fact: Sometimes they do; sometimes they don’t; sometimes they 

should; sometimes they shouldn’t.  More later.

Myth: Fault tolerance means reliability.
Fact: These are completely different.  Again, definitions are 

required. 
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More Myths and Facts

Myth: Fault tolerance is independent of performance.
Fact: In general, no.  Perhaps for some (weak) aspects, 

yes.  Support for fault tolerance will negatively impact 
performance.

Myth: Fault tolerance is a property of the MPI standard 
(which it doesn’t have.

Fact: Fault tolerance is not a property of the 
specification, so it can’t not have it. ☺

Myth: Fault tolerance is a property of an MPI 
implementation (which most don’t have).

Fact: Fault tolerance is a property of a program.  Some 
implementations make it easier to write fault-tolerant 
programs than others do.

University of Chicago Department of Energy

What is Fault Tolerance 
Anyway? 

• A fault-tolerant program can “survive” (in some sense 
we need to discuss) a failure of the infrastructure 
(machine crash, network failure, etc.)

• This is not in general completely attainable.  (What if all
processes crash?)

• How much is recoverable depends on how much state
the failed component  holds at the time of the crash.

♦ In many master-slave algorithms a slave holds a small 
amount of easily recoverable state (the most recent 
subproblem it received).

♦ In most mesh algorithms a process may hold a large 
amount of difficult-to-recover state (data values for some 
portion of the grid/matrix).

♦ Communication networks hold varying amount of state in 
communication buffers.
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What Does the Standard Say 
About Errors?

• A set of errors is defined, to be returned by MPI functions if 
MPI_ERRORS_RETURN is set.

• Implementations are allowed to extend this set.

• It is not required that subsequent operations work after an 
error is returned. (Or that they fail, either.)

• It may not be possible for an implementation to recover from 
some kinds of errors even enough to return an error code 
(and such implementations are conforming).

• Much is left to the implementation; some conforming 
implementations may return errors in situations where other 
conforming implementations abort.  (See “quality of 
implementation” issue in the Standard.)

♦ Implementations are allowed to trade performance against fault tolerance 
to meet the needs of their users

University of Chicago Department of Energy

Some Approaches to Fault 
Tolerance in MPI Programs

• Master-slave algorithms using intercommunicators
♦ No change to existing MPI semantics
♦ MPI intercommunicators generalize the well-understood two party 

model to groups of processes, allowing either the master or slave 
to be a parallel program optimized for performance.

• Checkpointing
♦ In wide use now
♦ Plain vs. fancy
♦ MPI-IO can help make it efficient

• Extending MPI with some new objects in order to allow a 
wider class of fault-tolerant programs.

♦ The “pseudo-communicator”
• Another approach: Change semantics of existing MPI functions

♦ No longer MPI (semantics, not syntax, defines MPI)
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A Fault-Tolerant MPI 
Master/Slave Program

• Master process comes up alone first. 
♦ Size of MPI_COMM_WORLD = 1

• It creates slaves with MPI_Comm_spawn
♦ Gets back an intercommunicator for each one
♦ Sets MPI_ERRORS_RETURN on each

• Master communicates with each slave using its particular 
communicator

♦ MPI_Send/Recv to/from rank 0 in remote group
♦ Master maintains state information to restart each subproblem in 

case of failure
• Master may start replacement slave with MPI_Comm_spawn
• Slaves may themselves be parallel

♦ Size of MPI_COMM_WORLD > 1 on slaves
♦ Allows programmer to control tradeoff between fault tolerance 

and performance

University of Chicago Department of Energy

State of Fault Tolerance

• Few MPI implementations are 
robust in the presence of 
communication failures (LAM/MPI 
can survive some)

• This should change in the next 
year
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MPI Implementations for 
the Grid

• Use any cluster-based implementation
♦ Rely on ssh or independently started, 

implementation specific demons to start processes
♦ Issues are 

• Executable distribution
• Security

• Use IMPI
♦ Only a few implementations
♦ Simple security model

• Use an MPI implementation built on top of a 
solid Grid infrastructure

♦ MPICH-G2

University of Chicago Department of Energy

Structure of MPICH

ADI-2
ADIO

MPICH

Existing parallel
file systemsChannel

Interface
globus2

ch_p4 Portals …

PVFS
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What is MPICH-G2?

• Full implementation MPI 1.2 standard
• Developed by Nick Karonis (Northern 

Illinois University) and Brian Toonen 
(Argonne National Laboratory)

• MPICH-based, globus2 device
• Makes extensive use of Globus services, 

and therefore …
• MPICH-G2 is a grid-enabled MPI

University of Chicago Department of Energy

Globus services in MPICH-G2

• Launching application
♦ Resource Specification Language (RSL)
♦ The Dynamically-Updated Request Online Coallocator 

(DUROC)
♦ Globus Resource Allocation Manager (GRAM)
♦ globusrun
♦ Globus Security Infrastructure (GSI)

• Staging
♦ Globus Access to Secondary Storage (GASS)

• TCP Messaging
♦ Globus I/O
♦ Data Conversion
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MPICH-G2 is Topology 
Aware

• Topology-aware collective 
operations

• Topology-discovery mechanisms
• Topology-aware multimethod 

messaging

University of Chicago Department of Energy

Multimethod Support

vMPI

Computer A Computer B

TCP
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When should MPICH-G2 
be used?

• Applications that are distributed by 
design
♦ Scientific applications that need either more 

compute power, more memory, or both

• Applications that are distributed by 
nature
♦ Remote visualization applications, 

client/server applications, etc.

University of Chicago Department of Energy

How to install MPICH-G2?

• Step 1 – Install Globus
♦ Acquire and install Globus v2.0 or later 

(http://www.globus.org).
♦ Deploy a Globus gatekeeper (a demon) on each 

machine (not node!) you intend to run.
♦ Acquire Globus identification (request from 

ca@globus.org) and set it up.
♦ Add your Globus ID to Globus “gridmap” file on each 

machine you intend to run.
♦ Test with “hello, world” program (from 

“Troubleshooting” section of www.globus.org/mpi).
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How to install MPICH-G2? 
(cont.)

• Step 2 – Install MPICH-G2
♦ Acquire MPICH v1.2.4 or later.
♦ setenv GLOBUS_LOCATION to your 

Globus installation.
♦ Pick a Globus “flavor” (never pick 

“threaded” flavor, always pick “mpi” 
flavor where available).

♦ Configure MPICH with
-device=globus2, make, make install

University of Chicago Department of Energy

How to use MPICH-G2?

• Step 1 – Compiling your MPI application
♦ source the file 

$GLOBUS_LOCATION/etc/globus-user-
env.csh

♦ Use MPICH-G2 compiler/linker:
• <mpichpath>bin/mpicc

• <mpichpath>bin/mpiCC
• <mpichpath>bin/mpif77
• <mpichpath>bin/mpif90
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How to use MPICH-G2? 
(cont)

• Step 2 – Running your MPI application
♦ Use mpirun as described in manual, e.g., 

% mpirun –np 2 a.out arg1 arg2

Or
♦ Write your own Globus RSL script 

(www.globus.org) and supply that only

% mpirun –globusrsl myfile.rsl
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Optional Execution-time 
Specifications

• Setting IP address range to specify a 
network interface

♦ setenv MPICH_GLOBUS2_USE_NETWORK_INTERFACE 
<ipaddr>

• Setting TCP port range
♦ setenv GLOBUS_TCP_PORT_RANGE “min max”

• Request TCP buffer size
♦ setenv MPICH_GLOBUS2_TCP_BUFFER_SIZE nbytes
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MPICH-G2, Globus, and 
Firewalls

• It is possible to run MPICH-G2 applications 
through firewalls, but it takes sys admin 
cooperation.

• Described briefly, sys admins creates a small 
“hole” in the firewall called a controllable 
ephemeral port .

• You use GLOBUS_TCP_PORT_RANGE to 
specify that port. 

• For full dicussion of Globus and firewalls, see 
http://www.globus.org/security/v2.0/firewalls.
html
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Server Example

#include <stdio.h>
#include “mpi.h”

int main(int argc, char **argv)
{

int passed_num, my_id;
char port_name[MPI_MAX_PORT_NAME];
MPI_Comm newcomm;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

passed_num = 111;



41

University of Chicago Department of Energy

Server Example (con’t)

if (my_id == 0)    {
MPI_Open_port(MPI_INFO_NULL, port_name);
printf("%s\n\n", port_name); fflush(stdout);

}

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, 
MPI_COMM_WORLD, &newcomm); 

if (my_id == 0)  {
MPI_Send(&passed_num, 1, MPI_INT, 0, 0, newcomm);
printf("after sending passed_num %d\n", passed_num); 

fflush(stdout);
MPI_Close_port(port_name);

}
MPI_Finalize();
return 0;

}
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Client Example

#include <stdio.h>
#include “mpi.h”

int main(int argc, char **argv)
{

int passed_num, my_id;
MPI_Comm newcomm;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

MPI_Comm_connect(argv[1], MPI_INFO_NULL, 0, 
MPI_COMM_WORLD, &newcomm); 
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Client Example (con’t)

if (my_id == 0) {
MPI_Status status;
MPI_Recv(&passed_num, 1, MPI_INT, 0, 0, newcomm, 

&status);
printf("after receiving passed_num %d\n", passed_num);
fflush(stdout);

}

MPI_Finalize();
return 0;

}
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Conclusions

• MPI the specification provides a good 
programming model for the Grid

• MPI implementations are usable, but 
more needs to be done
♦ MPICH-G2: www.globus.org/mpi

• Many opportunities for both using MPI 
on the Grid and contributing to 
developing implementations that are 
“grid friendly”


